Abstract

In this work, inspired by the dynamic sacrificial hydrogen bonds in biological materials, a very strong, super-tough, antibacterial, and cost-effective biodegradable poly(vinyl alcohol) (PVA) nanocomposite material was developed by incorporating the nanoscale antibacterial agent TA@LS-Ag. TA@LS-Ag was prepared from the green biomass tannic acid (TA) and sodium lignosulfonate (LS), and was facilely incorporated into the PVA matrix with a homogeneously interspersed nanoparticle size of about 20 nm. The PVA nanocomposite film with 2 wt % addition of TA@LS-Ag achieved the highest specific toughness of 262 J g-1 among the PVA-based films to date, which is far higher than that of natural spider silk (150-190 J g-1 ), as well as a very high tensile strength of 131.6 MPa. The excellent tensile strength and superior toughness were attributed to synergy of the nanophase separation structure and the intense hydrogen-bonding interactions between the nanoparticles and PVA matrix. The PVA/TA@LS-Ag nanocomposite films exhibited good antibacterial properties, despite the extremely low silver content (0.032-0.32 wt ‰). TA@LS-Ag also endowed the PVA films with excellent antioxidant and UV-shielding performance. As the biomass-derived LS and TA and the PVA matrix are all biodegradable, this work offers a facile strategy for preparing high-performance antibacterial and biodegradable polymeric materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call