Abstract

A negative (zero) Agatston coronary calcium score (CCS) by current methods confers a very low risk for hard coronary events during the next years. However, controversy remains on how to use a negative score since some hard events still occur. We report on a new method with improved detection sensitivity for very small calcifications with the potential to more confidently rule out early atherosclerotic disease. Seventy-eight (78) patients with negative Agatston scores by conventional methods with 2.5 mm slices were selected from routine GE 64 MDCT scans. Each scan was reconstructed a second time from the same data to create 0.625 mm isotropic voxels. The 2.5 mm images were manually scored by the usual Agatston method using the GE SmartScore™ software. Both the 2.5 and 0.625 mm image sets were scored with a new automated and calibrated method (N-vivo™, Image Analysis). The software automatically computes dual scoring thresholds that are statistically defined and specific for each patient, scanner, and scan. The images were hybrid calibrated by simultaneous scanned phantoms in combination with in vivo blood/muscle references. The output reported the calibrated mass scores along with the number of plaques using 18 pt, 3-D connectivity criteria. A CCS Test phantom with known CaHA microspheres was used to validate the method. Twenty-three percent (18 of 78) of the patients with negative Agatston scores by the conventional method scored positive for coronary calcifications by the N-vivo method. The number of small plaques scored per patient varied from 1 to 4. One patient with a single small calcification suffered a hard coronary event during the CT scan. All of the detected plaques were located in the proximal heart. The conventional CCS method misclassified 23% of these patients as having negative coronary calcium scores. The N-vivo automated scoring method with small voxel CT images increased the detection sensitivity of small calcifications with no increase in radiation dose. Detection of small coronary calcified plaques occult to conventional scoring methods may increase the negative predictive power of calcium scoring and may improve plaque composition analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call