Abstract

Rapid densification of a nanometer SiC powder doped with 2.04 wt% Al4C3 and 0.4 wt% B4C was conducted by using a nonconventional sintering technique called pulse electric current sintering (PECS). In all experiments, the sintering temperature and applied pressure were kept to be 1600oC and 47 MPa, respectively, while heating rates varied between 100oC/min and 400oC/min and the holding time was either 2 or 5 min. All of the specimens which were PECS‐sintered under various conditions reached near‐theoretical density. The microstructures of the rapidly densified SiC ceramics consisted of large elongated grains, and the grain size increased with the increase of heating rate. Polytype transformation of SiC occurred during the PECS process, where faster heating favored the formation of 6H polytype while slower heating favored 4H polytype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.