Abstract
The Boltzmann equation with electron-electron (e − e) interactions has been reduced to a Fokker-Planck equation (e − e FP ) in a previuos paper. In steady-state conditions, its solution q0(v) (where v is the electron speed) depends on the square of the acceleration a = eE/m. If we introduce the nonrenormalized zero-point field (ZPF) of QED, i.e., the one considered in stochastic electrodynamics, so that [Formula: see text], then q0(v) becomes similar to the Fermi-Dirac equation, and the two collision frequencies ν1(v) and ν2(v) appearing in the e − e FP become both proportional to 1/v in a small δv interval. The condition ν1(v) ∝ ν2(v) ∝ 1/v is at the threshold of the runaways. In the same δv range, the time-dependent solution q0(v,τ) of the e − e FP decays no longer exponentially but according to a power law ∝ τ− ɛ where 0.004 < ɛ < 0.006, until τ → ∞. That extremely long memory of a fluctuation implies the same dependence τ − ɛ for the conductance correlation function, hence a corresponding power-spectral noise S(f) ∝ fɛ−1 where f is the frequency. That behaviour is maintained even for a small sample because the back diffusion velocity of the electrons in the effective range δv, where they are in runaway conditions, is much larger than the drift velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.