Abstract

Asexually produced conidia of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt) are known to perceive cuticular very-long-chain aldehydes as signal substances strongly stimulating germination and differentiation of infection structures in a concentration- and chain-length-dependent manner. Conidial germination and appressorium formation are widely prevented by the presence of free water on the host surface. However, sexually produced ascospores can differentiate immersed in water. Applying a Formvar®-based in vitro-system showed that ascospore appressorium formation was strongly induced by the presence of wheat leaf cuticular wax. Similar to conidia, ascospore appressorium formation is triggered by the presence of very-long-chain aldehydes in a chain-length-dependent manner with n-octacosanal as the most inducing aldehyde. Surface hydrophobicity positively affected ascospore germination but not appressorium formation. Ascospores required significantly more time to complete the differentiation of appressoria and exhibited a more distinct dependence on the availability of free water than their conidial counterparts. Unlike conidia, ascospores showed a more variable germination and differentiation pattern even with a single germ tube differentiating an appressorium. Despite these differences our results demonstrate that a host surface recognition principle based on cuticular very-long-chain aldehydes is a common feature of B. graminis f. sp. tritici ascospores and conidia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call