Abstract

Magnetic fields, which are undoubtedly present in extragalactic jets and responsible for the observed synchrotron radiation, can affect the morphology and dynamics of the jets and their interaction with the ambient cluster medium. We examine the jet propagation, morphology and magnetic field structure for a wide range of density contrasts, using a globally consistent setup for both the jet interaction and the magnetic field. The MHD code NIRVANA is used to evolve the simulation, using the constrained-transport method. The density contrasts are varied between \eta = 10^{-1} and 10^{-4} with constant sonic Mach number 6. The jets are supermagnetosonic and simulated bipolarly due to the low jet densities and their strong backflows. The helical magnetic field is largely confined to the jet, leaving the ambient medium nonmagnetic. We find magnetic fields with plasma \beta \sim 10 already stabilize and widen the jet head. Furthermore they are efficiently amplified by a shearing mechanism in the jet head and are strong enough to damp Kelvin-Helmholtz instabilities of the contact discontinuity. The cocoon magnetic fields are found to be stronger than expected from simple flux conservation and capable to produce smoother lobes, as found observationally. The bow shocks and jet lengths evolve self-similarly. The radio cocoon aspect ratios are generally higher for heavier jets and grow only slowly (roughly self-similar) while overpressured, but much faster when they approach pressure balance with the ambient medium. In this regime, self-similar models can no longer be applied. Bow shocks are found to be of low excentricity for very light jets and have low Mach numbers. Cocoon turbulence and a dissolving bow shock create and excite waves and ripples in the ambient gas. Thermalization is found to be very efficient for low jet densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.