Abstract

Hydrodynamic jets, underdense with respect to their environment by a factor of up to 104, were computed in axisymmetry as well as in 3D. They finally reached a size of up to 220 jet radii, corresponding to a 100 kpc sized radio galaxy. The simulations are “bipolar”, involving both jets. These are injected into a King type density profile with small stochastic density variations. The back-reaction of the cocoons on the beams in the center produces armlength asymmetries of a few percent, with the longer jets on the side with the higher average density. Two distinguishable bow shock phases were observed: an inner elliptical part, and a later cylindrical, cigar-like phase, which is known from previous simulations. The sideways motion of the inner elliptical bow shock part is shown to follow the law of motion for spherical blast waves also in the late phase, where the aspect ratio is high, with good accuracy. X-ray emission maps are calculated and the two bow shock phases are shown to appear as rings and elongated or elliptical regions, depending on the viewing angle. Such structures are observed in the X-ray data of several radio galaxies (e.g. in Abell 2052 and Hercules A), the best example being Cygnus A. In this case, an elliptical bow shock is infered from the observations, a jet power of 1047 erg/s is derived, and the Lorentz factor can be limited to . Based on the simulation results and the comparison to the observations, the emission line gas producing the alignment effect in radio galaxies at high redshift is suggested to be cooled gas entrained over the cocoon boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.