Abstract

The presence of coronal magnetic fields connecting active regions is inferred from decimetric observations of solar noise storms with the Very Large Array (VLA) and from soft X-ray images taken by Yohkoh. Temporal changes in the noise storms appear to be correlated with some soft X-ray bursts detected by both Yohkoh and the GOES satellite. Combined analysis of the radio and X-ray data suggests a re-arrangement of the coronal magnetic field during the onset of impulsive noise storm burst emission. On one day during the combined VLA–Yohkoh–GOES observations, two widely-separated active regions appear to be connected by a faint trans-equatorial 91 cm source as well as two distinct soft X-ray loops. The two active regions show anti-correlated fluctuations in decimetric radio emission. On another day of combined VLA–Yohkoh observations, a series of 91 cm noise storm bursts are observed along the major axis of the associated noise storm continuum. Time sequences of Yohkoh soft X-ray images show a contraction of coronal loops prior to the onset of this series of bursts and a corresponding increase in the X-ray flux in the apparent footpoint of the overarching loop containing the noise storm. These observations imply that energy from a realignment of the magnetic field is being transferred, possibly by accelerated particles, along loops connecting separated active regions on the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call