Abstract

This study presents a comprehensive exploration of the fatigue response in the very high cycle fatigue (VHCF) regime for an additively manufactured (i.e., laser powder bed fused) A20X aluminum alloy. Although the need for high-performance materials with exceptional fatigue qualities has increased dramatically, the VHCF behavior of Al-Cu-Mg-Ag-TiB2 (A20X) structures remains largely unknown. A series of ultrasonic fatigue tests were performed to assess the prolonged fatigue life of the A20X alloy (in the VHCF domain where the number of cycles to failure is beyond 10 million cycles). The VHCF response, assessed through ultrasonic fatigue testing, was investigated by examining the stress-life (S-N) curves in a statistical framework, the fatigue crack initiation and propagation behavior, and the fracture surfaces. An asymptotic trend was experimentally found at 109 cycles, with a stress amplitude of 110 MPa for stress-relieved (SR) and 125 MPa for artificially aged (T7) materials, indicating the presence of an endurance limit. Furthermore, fracture surfaces showed the typical fisheye morphology, with a fine granular area (FGA) containing an internal crack-initiating site. The findings of this paper can assist in optimizing fatigue and durability design allowable for applications for extended fatigue life in the VHCF domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.