Abstract
This study investigates the very-high-cycle fatigue (VHCF) behavior at elevated temperature (650 °C) of the Inconel 718 alloy fabricated by selective laser melting (SLM). The results are compared with those of the wrought alloy. Large columnar grain with a cellular structure in the grain interior and Laves/δ phases precipitated along the grain boundaries were exhibited in the SLM alloy, while fine equiaxed grains were present in the wrought alloy. The elevated temperature had a minor effect on the fatigue resistance in the regime below 108 cycles for the SLM alloy but significantly reduced the fatigue strength in the VHCF regime above 108 cycles. Both the SLM and wrought specimens exhibited similar fatigue resistance in the fatigue life regime of fewer than 107–108 cycles at elevated temperature, and the surface initiation mechanism was dominant in both alloys. In a VHCF regime above 107–108 cycles at elevated temperature, the wrought material exhibited slightly better fatigue resistance than the SLM alloy. All fatigue cracks are initiated from the internal defects or the microstructure discontinuities. The precipitation of Laves and δ phases is examined after fatigue tests at high temperatures, and the effect of microstructure on the formation and the propagation of the microstructural small cracks is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.