Abstract

We report the synthesis and DNA incorporation of a novel C-5 thiopropyne-substituted thymidine derivative which can be used to bring about covalent crosslinks between two noncomplementary DNA strands. This modified thymine pairs normally with adenine in duplex DNA and is shown not to be destabilizing to DNA double helices. Placement of the thiol-nucleotide near the center of opposing pyrimidine strands in pyr·pur·pyr triple helices results in crosslinking of the pyrimidine strands under aerobic conditions. Thermal melting studies at neutral pH show that such crosslinked ligands bind complementary purine strands with higher affinity than is possible with simple Watson-Crick recognition alone. In addition, we describe the construction of a triplex-forming circular oligonucleotide which contains a similar disulfide link across the center. This macrobicyclic ligand binds with extremely high affinity and sequence selectivity to a complementary purine DNA strand. The formation of crosslinks across two noncomplementary strands represents a new strategy for increasing affinity and selectivity of DNA recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.