Abstract

Abstract Thin ZrC films were grown on (1 0 0) Si substrates at temperatures from 30 to 500 °C by the pulsed laser deposition technique. Auger electron spectroscopy investigations found that films contained oxygen concentration below 2.0 at%, while X-ray photoelectron spectroscopy investigations showed that oxygen is bonded in an oxy-carbide type of compound. The films’ mass densities, estimated from X-ray reflectivity curve simulations, and crystallinity improved with the increase of the substrate temperature. Williamson–Hall plots and residual-stress measurements using the modified sin 2 ψ method for grazing incidence X-ray diffraction showed that the deposited films are nanostructured, with crystallite sizes from 6 to 20 nm, under high micro-stress and compressive residual stress. Nanoindentation investigations found hardness values above 40 GPa for the ZrC films deposited at substrate temperatures higher than 300 °C. The high density of the deposited films and the nm-size crystallites are the key factors for achieving such high hardness values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.