Abstract

We investigate properties of group gradings on matrix rings M n ( R ) , where R is an associative unital ring and n is a positive integer. More precisely, we introduce very good gradings and show that any very good grading on M n ( R ) is necessarily epsilon-strong. We also identify a condition that is sufficient to guarantee that M n ( R ) is an epsilon-crossed product, i.e. isomorphic to a crossed product associated with a unital twisted partial action. In the case where R has IBN, we provide a characterization of when M n ( R ) is an epsilon-crossed product. Our results are illustrated by several examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.