Abstract

Very early age (0–20 h) concrete hydration is a complicated chemical reaction. During the very early age period, the concrete condition dramatically changes from liquid state to solid state. This paper presents the authors’ recent research on monitoring very early age concrete hydration characterization by using piezoceramic based smart aggregates. The smart aggregate (SA) transducer is designed as a sandwich structure using two marble blocks and a pre-soldered lead zirconate titanate (PZT) patch. Based on the electromechanical property of piezo materials, the PZT patches function as both actuators and sensors. In addition, the marble blocks provide reliable protection to the fragile PZT patch and develop the SA into a robust embedded actuator or sensor in the structure. The active-sensing approach, which involved a pair of smart aggregates with one as an actuator and the other one as a sensor, was applied in this paper’s experimental investigation of concrete hydration characterization monitoring. In order to completely understand the hydration condition of the inhomogeneous, over-cluttering, high-scattering characteristics of concrete (specifically of very early concrete), a swept sine wave and several constant frequency sine waves were chosen and produced by a function generator to excite the embedded actuating smart aggregate. The PZT vibration induced ultrasonic wave propagated through the concrete and was sent to the other smart aggregate sensor. The electrical signal transferred from the smart aggregate sensor was recorded during the test. As the concrete hydration reaction was occurring, the characteristic of the electrical signal continuously changed. This paper describes the successful investigation of the three states (the fluid state, the transition state, and the hardened state) of very early age concrete hydration based on classification of the received electrical signal. Specifically, the amplitude and frequency response of the electrical signal were of main interest. Both the swept sine wave and the constant frequency sine wave excitation methods presented the same conclusion on the three concrete states during the hydration, which enhances the reliability of the active-sensing approach for very early age concrete hydration monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call