Abstract

AbstractLong-baseline interferometry at infrared wavelengths allows the innermost regions around young stars to be observed. These observations directly probe the location of the dust and gas in the disks. The characteristic sizes of these regions found are larger than previously thought. These results have motivated in part a new class of models of the inner disk structure, but the precise understanding of the origin of these low visibilities is still in debate. Mid-infrared observations probe disk emission over a larger range of scales revealing mineralogy gradients in the disk. Spectrally resolved observations allow the dust and gas to be studied separately showing that the Brackett gamma emission can find its origin either in a wind or in a magnetosphere and that there is probably no correlation between the location of the Brackett gamma emission and accretion. In a certain number of cases, the very high spatial resolution reveals very close companions and can determine their masses. Overall, these results provide essential information on the structure and the physical properties of close regions surrounding young stars especially where planet formation is suspected to occur.KeywordsAccretion DiskYoung StarProtoplanetary DiskTauri StarCircumstellar DiskThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.