Abstract

Vertically aligned silicon nanowires (SiNWs) have been successfully synthesized using pure silane gas as a precursor by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of the growth temperature on the morphology, structure and photoluminescence properties of SiNWs has been studied. The SiNWs were needle-liked materials with the length of a few microns having the diameters of tens of nanometers near the bottom and a few nanometers at the top. Thinner nanowires have been obtained at the higher growth temperature process. High resolution transmission electron microscopy confirms that the nanowires are composed of a crystalline silicon core with an oxide shell. The PL spectrum of the Si nanoneedles have shown two emission bands around 450nm and ~750, which originate from the defects related to oxygen fault in the oxide shell and interfaces between the crystalline Si core and the oxide shell, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call