Abstract
Color-selective multifunctional and multiplexed photodetectors have attracted considerable interest with the increasing demand for color filter-free optoelectronics which can simultaneously process multispectral signal via minimized system complexity. The low efficiency of color-filter technology and conventional laterally pixelated photodetector array structures often limit opportunities for widespread realization of high-density photodetectors. Here, low-temperature solution-processed vertically stacked full color quantum dot (QD) phototransistor arrays are developed on plastic substrates for high-resolution color-selective photosensor applications. Particularly, the three different-sized/color (RGB) QDs are vertically stacked and pixelated via direct photopatterning using a unique chelating chalcometallate ligand functioning both as solubilizing component and, after photoexposure, a semiconducting cement creating robust, insoluble, and charge-efficient QD layers localized in the a-IGZO transistor region, resulting in efficient wavelength-dependent photo-induced charge transfer. Thus, high-resolution vertically stacked full color QD photodetector arrays are successfully implemented with the density of 5500 devices cm-2 on ultrathin flexible polymeric substrates with highly photosensitive characteristics such as photoresponsivity (1.1 × 104 AW-1 ) and photodetectivity (1.1 × 1018 Jones) as well as wide dynamic ranges (>150dB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.