Abstract

Nanometric gaps in noble metals can harness surface plasmons, collective excitations of the conduction electrons, for extreme subwavelength localization of electromagnetic energy. Positioning molecules within such metallic nanogaps dramatically enhances light-matter interactions, increasing absorption, emission, and, most notably, surface-enhanced Raman scattering (SERS). However, the lack of reproducible high-throughput fabrication techniques with nanometric control over the gap size has limited practical applications. Here we show sub-10-nm metallic nanogap arrays with precise control of the gap's size, position, shape, and orientation. The vertically oriented plasmonic nanogaps are formed between two metal structures by a sacrificial layer of ultrathin alumina grown using atomic layer deposition. We show increasing local SERS enhancements of up to 10(9) as the nanogap size decreases to 5 nm. Because these sub-10-nm gaps can be fabricated at high densities using conventional optical lithography over an entire wafer, these results will have significant implications for spectroscopy and nanophotonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.