Abstract

Control and manipulation of polarisation is an important topic for imaging and light matter interactions. In the infrared regime, the large wavelengths make wire grid polarisers (WGPs) a viable option, as it is possible to create periodic arrays of metallic wires at that scale. The recent advent of metamaterials has spurred an increase in non-traditional polariser motifs centred around more complicated repeat units, which potentially provide more functionality. The authors explore the use of 2D arrays of single and back-to-back vertically oriented cross dipoles arranged in a cubic in-plane silicon matrix. They show that both single and back-to-back versions have higher rejection ratios and larger bandwidths than either WGPs or 2D arrays of linear dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.