Abstract

In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm−2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

Highlights

  • In recent years, increasing efforts have been made to synthesize and understand ferroelectric nanostructures because of their peculiar physical properties, such as their finite size effects and unusual phase transitions [1, 2], offering a wide range of potential applications in nanoscale piezoelectric actuators [3], force and acceleration sensors [4, 5], ultrasonic transducers [6], and non-volatile ferroelectric random access memory (NV-FRAM) devices [7]

  • The synthesis speed of ferroelectric nanotubes (NTs) has been relatively slower than it has been for other materials, which

  • We have successfully developed highdensity and well-ordered vertically free-standing (VFS) PZT nanocup arrays on a conductive Pt/Si substrate, by a template-assisted ion beam etching (IBE) method

Read more

Summary

Introduction

In recent years, increasing efforts have been made to synthesize and understand ferroelectric nanostructures because of their peculiar physical properties, such as their finite size effects and unusual phase transitions [1, 2], offering a wide range of potential applications in nanoscale piezoelectric actuators [3], force and acceleration sensors [4, 5], ultrasonic transducers [6], and non-volatile ferroelectric random access memory (NV-FRAM) devices [7]. Applications of PZT nanostructures include tunable photonic crystals, ferroelectric random access memory (FRAMs), terahertz emission, fluidic delivery, and nanosensors [14,15,16]. The significant need of miniaturization of electronic devices leads to more extensive usage of PZT FRAMs based on the low-dimensional nanostructures [17]. Sol-gel process is one of the promising routes among many suitable methods for the preparation of nanostructured PZT materials, as it leads to products with high chemical homogeneity and purity at comparably low temperatures [18]. The synthesis speed of ferroelectric nanotubes (NTs) has been relatively slower than it has been for other materials, which

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.