Abstract

AbstractThe role of soil moisture for organic matter decomposition rates remains poorly understood and underrepresented in Earth System Models (ESMs). We apply the Dual Arrhenius Michaelis‐Menten (DAMM) model to a selection of ESM soil temperature and moisture outputs to investigate their effects on decomposition rates, at different soil depths, for a historical period and a future climate period. Our key finding is that the inclusion of soil moisture controls has diverging effects on both the speed and direction of projected decomposition rates (up to ±20%), compared to a temperature‐only approach. In the top soil, the majority of these changes is driven by substrate availability. In deeper soil layers, oxygen availability plays a relatively stronger role. Owing to these different moisture controls along the soil depth, our study highlights the need for depth‐resolved inclusion of soil moisture effects on decomposition rates within ESMs. This is particularly important for C‐rich soils in regions which may be subject to strong future warming and vertically opposing moisture changes, such as the peat soils at northern high latitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.