Abstract

Ultrathin MoS2 nanosheets were vertically anchored on the reduced graphene oxide (MoS2/rGO) via hydrothermal method. To further engineering the surface conductivity, ultrathin polypyrrol (PPy) layer was coated on the MoS2/rGO composite via in situ polymerization to form a bi-continuous conductive network with a sandwich-like structure. The graphene nanosheets and the PPy coating can facilitate the electrons transfer rate, while the ultrathin MoS2 nanosheets can enhance the utilization efficiency of the active materials. The obtained MoS2/rGO-10 composite exhibits high reversible specific capacity (970 mAh g−1 at 0.1 A g−1) and rate capability (capacity retention of 64% at 3.2 A g−1). Moreover, the PPy@MoS2/rGO hybrids reveal lower specific capacity but better rate capability, and a “trade-off” effect between electrons and ions transfer resistance was observed. This easy-scalable PPy surface conductivity engineering strategy may be applied in the preparation of high-performance LIBs active materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.