Abstract

This work is a brief account of the most recent developments observed in the application of ZnO nanostructured materials in excitonic solar cells (organic, hybrid and dye sensitized solar cells). Special emphasis is made to one-dimensional (1D), vertically-aligned nanostructures (nanowires NW, nanorods NR) of ZnO semiconductor oxide and the extensive research work invested in recent years for its application as an electron acceptor material in solar cells. Our aim is to give the reader a broad overview of this semiconductor oxide and to understand the causes, advantages and disadvantages, for its application in a well-aligned nanostructure form. We briefly describe the most applied methodologies for its synthesis as well as the effect on surface area, electron transport and charge recombination when it is applied as an electron transport material in excitonic solar cells (XSCs). The importance of low-cost and easy-scalable synthesis techniques, as well as stability issues on these solar cells are discussed. Finally, we include a brief analysis of the possible future trends for the application of this interesting semiconductor oxide in XSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call