Abstract

Perturbing the periodic electronic structure of the MoS2 basal plane via vacancy engineering offers an opportunity to explore its intrinsic activity. A significant challenge is the design of vacancy states, which include its type, distribution, and accessibility. Here, well-dispersed and vertically aligned MoS2 nanosheets with an in-plane selectively cleaved Mo-S bond on a carbon matrix (c-MoS2-C) have been prepared by a self-engaged strategy, which synergistically realizes uniform vacancy manufacturing and three-dimensional (3D) self-assembly of the defective MoS2 nanosheets. X-ray adsorption spectroscopy investigation confirms that the cleaved MoS2 basal plane generates newly active edge sites, where the Mo centers feature unsaturated coordination geometry. Theoretical calculations reveal that the exposed interior edge Mo sites represent new active centers for hydrogen adsorption/desorption. As expected, the synthesized c-MoS2-C exhibits markedly enhanced hydrogen evolution activity and superior stability. This in-plane activation strategy could be extended to other types of transition-metal dichalcogenides and catalytic reaction systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.