Abstract

Purpose Carbon nanotube-based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance. The paper aims to discuss these issues. Design/methodology/approach In this work, thermal CVD method is employed to produce VA-MWCNT carpets. Their structural properties were studied by means of SEM, XRD and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. Findings The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. Originality/value The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.