Abstract

<h2>Summary</h2> The layered transition metal oxyhydroxides have received increasing interest owing to the efficient energy conversion performance and material stability during the oxygen evolution reaction (OER). In particular, Fe-doped NiOOH has shown record-high OER performance in alkaline media among various catalysts. Theoretically, undercoordinated facets including Ni<sup>4+</sup>, exposed at the edges of NiOOH, were predicted to perform highly active OER. Therefore, here we suggest a rational catalyst design, a vertical-crystalline β-Fe/NiOOH layer built on faceted Fe/Ni nanocrystals, which exposes Ni<sup>4+</sup> sites and could improve the OER performance dramatically. Electrochemical OER tests recorded the overpotential of 210 mV at a current density of 10 mA cm<sup>−2</sup><sub>GEO</sub> and stable operation for 5 days. <i>In situ/operando</i> and density functional theory studies revealed that the Ni valence cycle between +2 and +4 assisted by Fe dopant is the key engine that greatly accelerates OER kinetics and that the vertical-crystalline β-Fe/NiOOH layers on Ni octahedra are stable under harsh OER conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.