Abstract

AbstractNumerical simulations in multilevel baroclinic turbulence in a β-plane channel model are discussed, focusing on the transport and mixing behavior. The temperature field in the model is relaxed toward a field consistent with a broad zonal jet with vertical shear that is a Gaussian function of the cross-channel coordinate. The resulting statistical equilibrium flow includes an active baroclinic eddy field. The transport and mixing properties are analyzed by considering the fields of potential vorticity and a passive tracer (from which effective diffusivities/equivalent lengths are calculated). The upper part of the flow organizes itself in such a way that there is a transport barrier in the center of the channel, with eddy mixing regions on either side. In the lower part of the flow the eddy mixing occurs across a single broad region, with no central transport barrier. The transition between these two regimes takes place abruptly at a height zT. A large set of simulations is used to map out the variation of zT as a function of external parameters including β, the thermal relaxation rate κT, and the (lower boundary) frictional relaxation rate κM (applied in the lowest model layer only). The transition height zT is argued to be relevant to sharp vertical transitions in transport and mixing observed in atmospheric and oceanic flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.