Abstract

In this paper vertical structure of tidal current in a typically coastal raft-culture area is discussed by field measurement and a numerical model. The observations show that the vertical structure changed dramatically. A tidal surface boundary layer (SBL) is well formed due to the frictional effects induced by extensive, high-density suspended culture as surface obstruction. Both the aquaculture drag and the bottom friction are much higher than those in non-raft-culture areas, and show an obvious variation with tidal flow. The significant earlier ebbing and earlier flooding appear in the upper water column instead of the seabed. And the maximal phase lag is about 1 h within one tide cycle. A 1D hydrodynamic model was modified to include the SBL and parameterized with the field data. It replicated the observed velocity profile and was then used to investigate the impacts of varying culture density and bottom friction on the vertical tidal-current structure. Modeling results indicate that the surface current velocity was largely damped because culture activities enhanced the frictional effects on flow intensively. The magnitude and vertical structure of tidal current are determined together with aquaculture drag and bottom friction. In addition, the vertical velocity structure has a nonlinear trend along with culture density and bottom friction. This study is a theoretical foundation for optimizing aquaculture configuration through regulating culture density and species distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.