Abstract

The ShUREX (Shigaraki UAV Radar Experiment) 2015 campaign carried out at the Shigaraki Middle and Upper atmosphere (MU) observatory (Japan) in June 2015 provided a unique opportunity to compare vertical profiles of atmospheric parameters estimated from unmanned aerial vehicle (UAV), balloon, and radar data in the lower troposphere. The present work is intended primarily as a demonstration of the potential offered by combination of these three instruments for studying the small-scale structure and dynamics in the lower troposphere. Here, we focus on data collected almost simultaneously by two instrumented UAVs and two meteorological balloons, near the MU radar operated continuously during the campaign. The UAVs flew along helical ascending and descending paths at a nearly constant horizontal distance from the radar (~ 1.0 km), while the balloons launched from the MU radar site drifted up to ~ 3–5 km in the altitude range of comparisons (~ 0.5 to 4.0 km) due to wind advection. Vertical profiles of squared Brünt-Väisälä frequency N2 and squared vertical gradient of generalized potential refractive index M2 were estimated at a vertical resolution of 20 m from pressure, temperature, and humidity data collected by UAVs and radiosondes. Profiles of M2 were also estimated from MU radar echo power at vertical incidence at a vertical sampling of 20 m and various time resolutions (1–4 min). The balloons and the MU radar provided vertical profiles of wind and wind shear S so that two independent estimates of the gradient Richardson number (Ri = N2/S2) could be obtained at a range resolution of 150 m. The two estimates of Ri profiles also showed remarkable agreement at all altitudes. We show that all three instruments detected the same prominent temperature and humidity gradients, down to decameter scales in stratified conditions. These gradients extended horizontally over a few kilometers at least and persisted for hours without significant changes, indicating that the turbulent diffusion was weak. Large discrepancies between N2and M2 profiles derived from the balloon, UAV, and radar data were found in a turbulent layer generated by a Kelvin-Helmholtz (KH) shear flow instability in the height range from 1.80 to 2.15 km. The cause of these discrepancies appears to depend on the stage of the KH billows.

Highlights

  • Co-located and simultaneous measurements from instrumented Unmanned Aerial Vehicles (UAV) (Lawrence and Balsley 2013), balloon-borne radiosondes, and the 46.5 MHz middle and upper atmosphere (MU) radar were made for the first time at the Shigaraki MU observatory during the ShUREX (Shigaraki UAV Radar Experiment) campaign in June 2015

  • Luce et al (2017) compared profiles of the squared generalized potential refractive index gradient M2 (Ottersten 1969) derived from pressure, temperature, and humidity (PTU) data collected by the UAVs with those derived from MU radar echo power by using a model based on partial reflection mechanism

  • These regions were associated with different atmospheric states and dynamics according to UAV and balloon data analyses shown by Figs. 3, 4, and 5

Read more

Summary

Introduction

Co-located and simultaneous measurements from instrumented Unmanned Aerial Vehicles (UAV) (Lawrence and Balsley 2013), balloon-borne radiosondes, and the 46.5 MHz middle and upper atmosphere (MU) radar were made for the first time at the Shigaraki MU observatory during the ShUREX (Shigaraki UAV Radar Experiment) campaign in June 2015. 150 a aThe Richardson number was obtained from the wind shear measured by the MU radar and N2 estimated from UAV data at a vertical resolution of 150 m parameters in stably stratified conditions above the altitude of 2.15 km.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call