Abstract

AbstractThe nature of ocean bottom pressure () variability is considered on large spatial scales and long temporal scales. Monthly gridded estimates from the Gravity Recovery and Climate Experiment (GRACE) Release-05 and the new version 4 bidecadal ocean state estimate of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) are used. Estimates of from GRACE and ECCO are generally in good agreement, providing an independent measure of the quality of both products. Diagnostic fields from the state estimate are used to compute barotropic (depth independent) and baroclinic (depth dependent) components. The relative roles of baroclinic and barotropic processes are found to vary with latitude and time scale: variations in at higher latitudes and shorter periods are affected by barotropic processes, whereas fluctuations at lower latitudes and longer periods can be influenced by baroclinic effects, broadly consistent with theoretical scaling arguments. Wind-driven Rossby waves and coupling of baroclinic and barotropic modes due to flow–topography interactions appear to be important influences on the baroclinic variability. Decadal simulations of monthly variability based on purely barotropic frameworks are expected to be in error by about 30% on average ( in the tropical ocean and at higher latitudes). Results have implications for applying GRACE observations to problems such as estimating transports of the Antarctic Circumpolar Current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.