Abstract

AbstractOcean mesoscale eddies enhance meridional buoyancy transport, notably in the Antarctic Circumpolar Current where they contribute to setting the deep stratification of the neighboring ocean basins. The much‐needed parameterization of this buoyancy transport in global climate models requires a theory for the overall flux, but also for its vertical structure inside the fluid column. Based on the quasi‐geostrophic dynamics of an idealized patch of ocean hosting an arbitrary vertically sheared zonal flow, we provide a quantitative prediction for the vertical structure of the buoyancy flux without adjustable parameters. The prediction agrees quantitatively with meridional flux profiles obtained through numerical simulations of an idealized patch of ocean with realistic parameter values. This work empowers modelers with an explicit and physically based expression for the vertical profile of buoyancy transport by ocean baroclinic turbulence, as opposed to the common practice of using arbitrary prescriptions for the depth‐dependence of the transport coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.