Abstract

The vertical structure of forests affects energy transfer and material exchange within forest ecosystems and is of great significance to scientific forestry and ecology research. In this paper, the Shangri-La forest plot in northwestern Yunnan Province of China was the study area. The forest sample plot point cloud data were obtained by terrestrial laser scanning technology. A new method for classifying the vertical structure of forest sample plots based on point cloud data is proposed. The method comprehensively utilizes morphological filtering and comparative shortest-path (CSP) algorithm point cloud segmentation technology. Additionally, the method proposes the concept of secondary CSP segmentation that precisely classifies three types of vertical features in forest point cloud data: trees, shrubs and the ground. Finally, an accuracy analysis showed that the error rate of the tree results was 1.87%, and the error rate of the shrub results was 16.23%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.