Abstract
Vertical silicon nanowire (SiNW) platforms are candidates for use in ultrasensitive biosensors, with surface-to-volume ratio higher than one-dimensional SiNW . In this paper, a vertical SiNW electrolyte–insulator–semiconductor (EIS) structure with an ALD-HfO2 sensing membrane is proposed for use in a hydrogen ion sensor. Hafnium dioxide is used as the sensing membrane, which was deposited on the surface of the vertical SiNW structure by atomic layer deposition. The sensing properties were examined using a HP4284A high-precision LCR analyzer. A linear relationship was found between the flatband voltage shift and the hydrogen ion concentration. Comparing with different diameters of SiNW , the sensitivity with diameter of 200 nm was slightly higher than 100 nm. A post-deposition rapid thermal annealing (RTA) was utilized to optimize the sensing properties, and the sensitivity was increased to 51.07 mV/pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.