Abstract

Marine particle-attached (PA) and free-living (FL) microbes play important roles in the biogeochemical cycling of organic matter along the water column. Deep-sea cold seeps are highly productive and chemosynthetic ecosystems, their continuous emission of CH4, CO2, and H2S can reach up to 100 m in the above water, therefore would influence the distribution and potential metabolic functions of deep-sea prokaryotes. In this study, the vertical distribution profiles of both PA and FL microbes in the water column above two cold seeps of the South China Sea were investigated using Illumina sequencing and quantitative PCR (qPCR) based on 16S rRNA gene. Photosynthetic and heterotrophic prokaryotes were predominant in respective surface and deep layers below the photic zone. The typical cold seep chemosynthetic microbes, such as methanotrophs and sulfate-reducing bacteria were observed with low proportions in the two cold seeps as well. Distinct PA and FL microbial fractions were found in terms of abundance and diversity. FL fraction exposed to the bulk water was significantly affected by temperature and inorganic nutrients, whereas PA fraction relied more on the organic matter of the particles and less susceptible to the environmental variability. Our study highlights the importance of vertical geochemical gradients on the distribution and potential metabolic choice of marine microbes and extends our current knowledge of depth-associated microbial distribution patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call