Abstract

Vertical plasmonic Mach-Zehnder Interferometers are investigated theoretically and experimentally, and their potential for ultra-sensitive optical sensing is discussed. Plasmonic interferences arise from coherently coupled pairs of subwavelength slits, illuminated by a broadband optical source, and this interference modulates the intensity of the far-field scattering spectrum. Experimental results, obtained using a simple experimental setup, are presented to validate theoretically predicted interferences introduced by the surface plasmon modes on top and bottom surfaces of a metal film. By observing the wavelength shift of the peaks or valleys of the interference pattern, this highly compact device has the potential to achieve a very high sensitivity relative to other nanoplasmonic architectures reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call