Abstract

AbstractCu2ZnSn(S,Se)4 (CZTSSe) solar cells have resource distribution and economic advantages. The main cause of their low efficiency is carrier loss resulting from recombination of photo‐generated electron and hole. To overcome this, it is important to understand their electron‐hole behavior characteristics. To determine the carrier separation characteristics, we measured the surface potential and the local current in terms of the absorber depth. The elemental variation in the intragrains (IGs) and at the grain boundaries (GBs) caused a band edge shift and bandgap (Eg) change. At the absorber surface and subsurface, an upward Ec and Ev band bending structure was observed at the GBs, and the carrier separation was improved. At the absorber center, both upward Ec and Ev and downward Ec‐upward Ev band bending structures were observed at the GBs, and the carrier separation was degraded. To improve the carrier separation and suppress carrier recombination, an upward Ec and Ev band bending structure at the GBs is desirable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.