Abstract

We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step toward 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO(2) nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out-of-plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick-walled microcavities. Moreover, an array of microtube cavities is prepared, and each microtube cavity is integrated with multiple waveguides, which opens up interesting perspectives toward parallel and multi-routing through a single-cavity device as well as high-throughput optofluidic sensing schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.