Abstract

We report on laser generation of microchannels by focused femtosecond laser pulses inside PMMA bulk material. This process enables direct fabrication of three dimensional microfluidic channel architectures with generally unlimited channel length. Based on nonlinear ultrashort pulse laser absorption of high intensities around the focal volume, a material modification including a refractive index shift is triggered. After laser exposure the channel is created by a gaseous degradation of exposed areas during an annealing process. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stages, allowing freely chosen complex shaped channel architectures. In this report, the creation of inner lying vertical microchannels is examined. In addition to previously shown horizontal channel architectures vertical channels are necessary to fulfill the definition of an internal three-dimensional microfluidic structure and to create interconnections in multilevel lab on chip devices. The cross section and geometry of vertical channels are strongly influenced by laser parameters such as pulse duration, laser power and writing speed. The influence of these process parameters on the channels diameter is determined and parameters are optimized regarding a controllable, stable and reproducible process. The functionality of vertical microchannels as an interconnection between multilayer microfluidic devices is demonstrated using a Rhodamine B solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call