Abstract
Visible light communication (VLC) channel quality depends on line-of-sight (LoS) transmission, which cannot guarantee continuous transmission due to interruptions caused by blockage and user mobility. Thus, integrating VLC with radio frequency (RF) such asWireless Fidelity (WiFi), provides good quality of experience (QoE) to users. A vertical handover (VHO) scheme that optimizes both the cost of switching and dwelling time of the hybrid VLC–WiFi system is required since blockage on VLC LoS usually occurs for a short period. Hence, an automated VHO algorithm for the VLC–WiFi system based on the hidden Markov model (HMM) is developed in this article. The proposed VHO prediction scheme utilizes the channel characterization of the networks, specifically, the measured received signal strength (RSS) values at different locations. Effective RSS are extracted from the huge datasets using principal component analysis (PCA), which is adopted with HMM, and thus reducing the computational complexity of the model. In comparison with state-of-the-art VHO handover prediction methods, the proposed HMM-based VHO scheme accurately obtains the most likely next assigned access point (AP) by selecting an appropriate time window. The results show a high VHO prediction accuracy and reduced mixed absolute percentage error performance. In addition, the results indicate that the proposed algorithm improves the dwell time on a network and reduces the number of handover events as compared to the threshold-based, fuzzy-controller, and neural network VHO prediction schemes. Thus, it reduces the ping-pong effects associated with the VHO in the heterogeneous VLC–WiFi network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.