Abstract

Coexistence has been widely studied in small mammals and frequently is assumed to be facilitated by habitat segregation. Using live trapping and spool-and-line experiments, we analyzed habitat selection and segregation across multiples scales for Peromyscus leucopus and Ochrotomys nuttalli. At the habitat scale of a forest stand (∼1–100sha) P. leucopus co-occurred at all sites where O. nuttalli was found, and we did not detect evidence of positive or negative associations or habitat segregation. However, O. nuttalli was restricted to early successional forests, and P. leucopus had significantly lower abundances in early successional forests than in other habitats. We found similar patterns at the mesohabitat scale of the study site (400m2). O. nuttalli abundance increased with increasing shrub and tree densities, while increases in P. leucopus abundance were associated with open understories. At the microhabitat scale of the individual movement trail, we found vertical segregation. Movement trails for O. nuttalli were at significantly higher elevation (mean height=142.93±37.10cm) than P. leucopus trails (mean height=15.4±4.98cm; F-value=35.29, p<0.001). We concluded that microhabitat segregation was driven by differential use of vertical space for movement and foraging. We suggest O. nuttalli is superior to P. leucopus in its ability to acquire food especially in shrubby subcanopies where few acorns are available. However, P. leucopus is superior in its ability to forage and avoid predators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call