Abstract
We demonstrate vertical graphene-base hot-electron transistors (GB-HETs) with a variety of structures and material parameters. Our GB-HETs exhibit a current saturation with a high current on-off ratio (>10(5)), which results from both the vertical transport of hot electrons across the ultrathin graphene base and the filtering of hot electrons through a built-in energy barrier. The influences of the materials and their thicknesses used for the tunneling and filtering barriers on the common-base current gain α are studied. The optimization of the SiO2 thickness and using HfO2 as the filtering barrier significantly improves the common-base current gain α by more than 2 orders of magnitude. The results demonstrate that GB-HETs have a great potential for high-frequency, high-speed, and high-density integrated circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.