Abstract

Gas migration outside coal seam gas reservoirs has been identified as a risk associated with CSG production. While such an event has not been reported or scientifically associated with CSG production, understanding the physical mechanism of the vertical migration in the overburden involved should gas leakage occur would improve mitigation strategies and risk evaluation. In this extended abstract, a series of key modelling scenarios of gas migration above the reservoir are developed. Interpretation of the scenarios highlights that: the seal/leakage nature of the overburden strongly impacts gas migration and volume of gas leaked; when leakage does occur, the leaked volume represents a very small portion of the original gas in place and volume of gas produced; the connectivity of the overburden plays a critical role on the gas migration pathways and volume of gas leaked; and, residual gas saturation, and relative permeability hysteresis provide means to trap the mobile gas, significantly reducing the volume of gas leaked reaching shallower formations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call