Abstract

For various lighting and monolithic sensor systems application, vertically aligned three-dimensional (3D) gallium nitride (GaN)- and indium gallium nitride (InGaN)/GaN-based LED nanowire arrays with sub-200 nm feature sizes (down to 35 nm) were fabricated using a nanosphere lift-off lithography (NSLL) technique combined with hybrid top-down etching (i.e., inductively coupled plasma dry reactive ion etching (ICP-DRIE) and wet chemical etching). Owing to the lithographic opening and well-controlled surface functionalization prior to the polystyrene nanosphere (PN) deposition, vertical GaN nanowire arrays with an area density of 9.74 × 108 cm–2 and an aspect ratio of >10 could be realized in a specified large area of 1.5 × 1.5 mm2. Optoelectrical characteristics of the nanoLEDs were further investigated in cathodoluminescence (CL) measurements, in which multiquantum well (MQW) shows a clear CL-emission at a wavelength of 465 nm. Thus, using NSLL to manufacture low-cost but highly ordered 3D GaN-based nanowir...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.