Abstract

This study focuses on the performance and clogging of vertical flow constructed wetlands (VFCWs) planted with climbing ornamentals and ornamental plants for greywater treatment, after two years of operation at mesocosm level. Different substrate (sand, vermiculite) and vegetation (Trachelospermum jasminoides, Lonicera japonica, Callistemon laevis) types were evaluated to determine the optimal removal of pollutants. Results revealed that, during the second year of operation, removal efficiencies of turbidity and COD were significantly higher (1st year: 54–94 %; 71–89 %, 2nd year: 82–98 %; 86–95 %, respectively) for both studied planted substrates, compared to the first year. Moreover, it was found that sand systems from each studied plant as well as from the unplanted systems, were more effective compared to vermiculite for most of the studied parameters (turbidity, TSS, COD, anionic surfactants, pathogens). Sand systems were also quite effective in removing total coliforms (5 log reduction) and Escherichia coli (4 log reduction). At the end of the two-year experiment, all planted systems with sand had significantly higher hydraulic conductivity than the unplanted ones. With reference to evapotranspiration, even though planted systems had significantly higher losses, C. laevis systems demonstrated less water losses than the other vegetated systems. According to the findings, the studied plants managed to continue growing without facing added stress. Therefore, the application of climbing and ornamental plants in VFCWs for greywater treatment in buildings seems a promising option for developing green infrastructures in urban areas and enhancing the removal efficiency of such systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.