Abstract

Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long terminal repeat (LTR) retrotransposons, non-LTR retrotransposons rarely undergo HT, and their phylogenies are largely congruent to those of their hosts. Previously, we described HT of CR1-like non-LTR retrotransposons between butterflies (Maculinea) and moths (Bombyx), which occurred less than 5 million years ago (Novikova O, Sliwinska E, Fet V, Settele J, Blinov A, Woyciechowski M. 2007. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol. 7:93). In this study, we continued to explore the diversity of CR1 non-LTR retrotransposons among lepidopterans providing additional evidences to support HT hypothesis. We also hypothesized that DNA transposons could be involved in HT of non-LTR retrotransposons. Thus, we performed analysis of one of the groups of DNA transposons, mariner-like DNA elements, as potential vectors for HT of non-LTR retrotransposons. Our results demonstrate multiple HTs between Maculinea and Bombyx genera. Although we did not find strong evidence for our hypothesis of the involvement of DNA transposons in HT of non-LTR retrotransposons, we demonstrated that recurrent and/or simultaneous flow of TEs took place between distantly related moths and butterflies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call