Abstract
Vertical electrical conduction in Au/(polycrystal-line pentacene)/Al diode structures and the influence of the kinetic energy of incident Au atoms on the conduction property have been comprehensively studied using current–voltage–temperature (I–V–T) measurements, ultraviolet photoelectron spectroscopy (UPS), atomic-force-microscope (AFM) current imaging, etc. In the I–V characteristics, a symmetrical ohmic current component appeared when a low voltage was applied, and a super-linear one appeared when a high positive voltage was applied to Au. The component in the high-forward-voltage region was concluded to be a thermionic emission of holes from Au with a 0.23-eV injection barrier, which is the normal hole conduction through the highest occupied molecular orbital of pentacene. On the other hand, the ohmic component was concluded to be a metal-like electron transport through high-density gap states at grain boundaries which were induced by the Au penetration into pentacene. UPS and I–V–T measurements clearly indicated the generation of the gap states and the enhancement of their density by the reduction of Au kinetic energy. For vertical-type devices with polycrystalline organic films, the ohmic conduction through the grain boundary will increase the leakage current. On the contrary, it possibly enhances the carrier injection in lateral-type transistors in the case of top-contact configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.