Abstract

It may be necessary to arrange railway traffic on the outer edge of the cantilever deck of a box girder bridge for the sake of transportation planning. A continuous box girder bridge was designed in China to carry a single-track urban rail transit traffic on the cantilever deck of the bridge and three-lane highway traffic on the other part of the deck. In order to investigate the possible resonant responses of the coupled train–bridge system, the resonance condition of the cantilever deck under moving train loads is discussed analytically, and then numerical analyses of the vertical train–bridge dynamic interaction considering local vibration of the cantilever decks are carried out. The degrees of freedom of the bridge modeled by shell elements are so large that mode superposition method is used to reduce the computation efforts. It is found that the resonance speed of the cantilever deck predicted by the analytical method is 305 km/h, which agrees well with the numerical result. The numerically computed results also indicate that the serviceability of the bridge deck and the ride quality of the railway vehicles in the vertical direction are in good condition below the critical speed of 200 km/h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.