Abstract

In this paper, a computational study using the moving element method (MEM) is carried out to investigate the dynamic response of a high-speed rail (HSR) traveling at non-uniform speeds. A new and exact formulation for calculating the generalized mass, damping and stiffness matrices of the moving element is proposed. Two wheel–rail contact models are examined. One is linear and the other nonlinear. A parametric study is carried out to understand the effects of various factors on the dynamic amplification factor (DAF) in contact force between the wheel and rail such as the amplitude of acceleration/deceleration of the train, the severity of railhead roughness and the wheel load. Resonance in the vibration response can possibly occur at various stages of the journey of the HSR when the speed of the train matches the resonance speed. As to be expected, the DAF in contact force peaks when resonance occurs. The effects of the severity of railhead roughness and the wheel load on the occurrence of the jumping wheel phenomenon, which occurs when there is a momentary loss of contact between the wheel and track, are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.