Abstract

Nowadays, suction caissons are being increasingly deployed as foundations to support offshore wind turbines (OWTs). Due to the overturning moment induced by waves and wind, vertical forces are the dominating ones acting on these foundations. In this study the dynamic stiffness and damping coefficients of suction caissons embedded in a viscoelastic soil layer over bedrock, subjected to vertical dynamic load were investigated. Numerical analyses of representative 3D finite element models were performed, while the numerical modelling was validated against existing analytical solutions for end bearing piles. The vertical dynamic response of suction caissons was evaluated by considering the effects of the foundation’s geometry, i.e. the slenderness ratio, and the stiffness of the soil layer on the vertical dynamic impedance of suction caissons. Results showed that the overall dynamic response is profoundly affected by the skirt length and by the variation of soil stiffness with depth.Mathematical expressions of the dynamic stiffness and damping coefficients were derived pertaining to foundations with various slenderness ratios and embedded in different soil profiles. The proposed expressions can be implemented in structural models used for the dynamic analysis of the support structure of a wind turbine, taking thus into consideration the effects of soil-structure-interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call