Abstract

BackgroundIn lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. It has been suggested that zooplankton (Daphnia) faced with this trade-off distribute vertically according to an "Ideal Free Distribution (IFD) with Costs". An experiment has been designed to test the density (competition) dependence of the vertical distribution as this is a basic assumption of IFD theory.ResultsExperiments were performed in large, indoor mesocosms (Plankton Towers) with a temperature gradient of 10°C and a deep-water algal maximum established below the thermocline. As expected, Daphnia aggregated at the interface between the two different habitats when their density was low. The distribution spread asymmetrically towards the algal maximum when the density increased until 80 % of the population dwelled in the cool, food-rich layers at high densities. Small individuals stayed higher in the water column than large ones, which conformed with the model for unequal competitors.ConclusionThe Daphnia distribution mimics the predictions of an IFD with costs model. This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability. Fish predation causing diel vertical migrations can be incorporated as additional costs. This is important as the vertical location of grazing zooplankton in a lake affects phytoplankton production and species composition, i.e. ecosystem function.

Highlights

  • In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers

  • The Daphnia distribution mimics the predictions of an Ideal Free Distribution (IFD) with costs model

  • This concept is useful for the analysis of zooplankton distributions under a large suite of environmental conditions shaping habitat suitability

Read more

Summary

Introduction

In lakes with a deep-water algal maximum, herbivorous zooplankton are faced with a trade-off between high temperature but low food availability in the surface layers and low temperature but sufficient food in deep layers. The water column in a stratified lake provides vertical gradients of habitat qualities for zooplankton. Large zooplankton leave the warm, lighted and often food-rich epilimnion during the day to dwell in the cold, dark hypolimnion where food may be of low quantity and poor quality, in order to avoid predation by visually hunting predators (fish). They return to the surface layers at night when the predation risk is small [2]. Numerous studies have shown that this pattern is influenced by food conditions [3,4,5] and temperature gradient [6,7]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.